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Aesthetic Yet Customizable Adversarial Patches
Towards Physical Attacks

Hui Wei, Hanxun Yu, Zhixiang Wang, Shin’ichi Satoh, Hao Tang, Zheng Wang

Abstract—Physical attacks against deep neural networks using
adversarial patches have seen increasing success. However, these
patches pervasively have a poor appearance and are visually
conspicuous, making them difficult to apply in the real world
without drawing human attention. A major challenge herein is
how to generate an adversarial patch that is visually aesthetic
while having a stable attack effect. In this paper, we consider
patch generation as an image transformation problem, where an
input image is transformed into an output image with attacking
abilities. Thus, we propose an end-to-end method to generate
Aesthetic yet Customizable Adversarial Patches (ACAP) that
are stylized, diversified, and attacked. Specifically, in order to
generate patterns that match the visual perception of human
observers, ACAPs combine the semantic content of cartoon
images and the style feature of artistic style images. In addition,
we train an image-to-patch neural network that can transform
arbitrary input images into adversarial patches that successfully
perform physical attacks. Moreover, we delve into the influential
relationship between the style and attack effectiveness, and
conclude that styles with more saturated and richer colors
have more attack capabilities. Experimental evaluation shows
that, in both digital and physical-world spaces, our method
improves visual quality while remaining effective in fooling the
person detector. The successful realization of ACAP illustrates
the feasibility of protecting personal privacy from detection by
malicious surveillance cameras in the physical world.

Index Terms—Adversarial patches, Physical attacks, Person
detector.

I. INTRODUCTION

DEEP neural networks (DNNs) are rapidly developing
and have achieved great success in many tasks, such

as image classification [1], image segmentation [2], depth
estimation [3], object detection [4], natural language process-
ing [5], and recent studies also show that DNNs are highly
vulnerable to adversarial attacks [6]–[9]. Adversarial attacks
exist not only in the digital space [10], [11], but have been
successfully applied to the physical space [12]–[16]. In recent
years, researchers have conducted many meaningful studies
on adversarial attacks, which have significant implications for
both explainable AI [17]–[20] and AI security [21].
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Fig. 1. Objective: A person is invisible under a camera with the person
detector. We achieve the objective by wearing the T-shirts with adversarial
patches. Our ACAP is combine the semantic content, the visual effect of
stylization and the attack ability, which are aesthetic, diversified and attacking-
robust. Our method enables users to interface by inputting their favorite
content and style pair, and generating the customizable patches.

In general, effective digital attacks can be achieved using
pixel-level and human-eye-invisible perturbations. But they are
not feasible for real-world physical attacks, because physical
attacks require capturing the perturbations by sensors, like
cameras. Related methods perform physical adversarial attacks
by using adversarial patches instead of adding perturbations.
However, the appearance and color distribution of existing
adversarial patches are rather abrupt, giving a strong visual
impact [22], [23], or meaningless scribbles that are difficult
to understand [25], [27]. In practical applications, it will be
discovered by the victim or defender before a successful attack
is made. To apply adversarial patches in the physical world,
the main challenge is to produce visually aesthetic adversarial
patches with physical attack effects.

One approach for improving the visual quality of patches
is to constrain their structural and textural features, which
has been used for example by PSAP [14] using the seed
patch, and TextureAP [24] using the total variation. However,
the low-dimensional features used by these methods do not
contain semantics, which results in the generated patches
remaining incomprehensible to humans. In parallel, the current
methods are optimization-based, and patches are generated
by minimizing a loss function, which is inefficient, since
inference requires solving a complete optimization problem.

In this paper, we study adversarial attacks on the per-
son detection model. To address the mentioned issue, we
propose an end-to-end method to generate the Aesthetic
yet Customizable Adversarial Patches (ACAP), which are
stylized, diversified and attacking-robust. As shown in Fig.
1, our approach aestheticizes adversarial patches, provides
solutions for customization, and achieves attacks on the
physical world. Concretely, we consider patch generation as



IEEE TRANSACTIONS ON MULTIMEDIA 2

TABLE I
CONSIDERED FACTORS OF DIFFERENT ADVERSARIAL PATCHES (AP).

GoogleAP [22] DPATCH [23] PSAP [14] TextureAP [24] AdvT-shirt [25] LAP [26] ACAP (Ours)

Style Feature ? ✓
Texture Feature ? ✓ ✓ ✓

Structure Feature ? ✓ ✓ ✓
Digital Attack ? ✓ ✓ ✓ ✓ ✓ ✓ ✓

Physical Attack ? ✓ ✓ ✓ ✓ ✓ ✓
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Fig. 2. A comparison between prior patch generation methods [22], [24],
[26] (left) and ours (right).

an image transformation problem and propose an image-
to-patch transformation network that has the capability of
transforming arbitrary images into adversarial patches that
perform physical attacks successfully. Fig. 2 indicates the
difference between the two types of approaches, and in the
testing phase, our transformation network produces patches
in real time. Regarding visual aesthetics, ACAPs introduce
semantic content from cartoon images, which is perceptually
consistent with human perception. Although recent work [26]
makes similar attempts to add structure and texture features
to patches, the style, as a vital feature of images, is crucial,
but not yet exploited. We further combine the Neural Style
Transfer technique to camouflage adversarial perturbation as
style features, meanwhile introduce aesthetic elements to our
created patches. With arbitrary pairings of stylistic features and
semantic contents, we generate diversified ACAPs. In addition,
we study the attack effect of different styles and conclude
that the more saturated and richer the color, the more attack
abilities the style has. This finding provides a clue to explore
the attack mechanism of adversarial patches.

We demonstrate the performance of our method through a
series of experiments. Our results on the YOLOv2 detection
model show that our ACAPs achieve a considerably obvious
attack effect, while being better in terms of visual quality
compared to other methods. We summarize the contributions
of our work as follows:

• We propose an end-to-end network to transform arbi-
trary input images into adversarial patches for successful
physical attacks. The network balances aesthetics and
attackness. To the best of our knowledge, we are the first
to introduce the image transformation network to control
the generation of adversarial patches.

• To improve the visual aesthetics of adversarial patches,
we distill content features from cartoon images and infuse
artistic style into our generated ACAPs. Unlike previous
work that considered only the structural and textural
features of the patches, we take advantage of stylistic
features.

• By analyzing the differences in the attack effect of
patches with different styles, we concluded a pattern:
styles with higher color saturation and richness have
stronger attack capabilities, and vice versa. This finding
provides a clue for us to explore the attack mechanism
of adversarial patches.

• We conduct experiments to show our proposed ACAP
not only achieves effectiveness for attacking the person
detection model in both digital and physical spaces, but
also is more aesthetic to human perception compared to
other adversarial patches.

II. RELATED WORK

A. Adversarial Patches for DNN Models

Recently, adversarial patches, which confine the perturba-
tion to a small and localized region without perturbation
constraint, have been frequently applied to physical attacks.
Brown et al. [22] firstly designed an adversarial patch fooling
classifiers to output any targeted class. After that, Liu et
al. [23] attacked mainstream detectors in the digital space
by DPATCH, a patch with noisy adversarial perturbations.
However, they focused on attacking ability and disregarded
the aesthetics of patches, which causes the patch to be abrupt
and compelling. To obtain the visually aesthetic adversarial
patch, Thys et al. [24] made sure the optimizer favors a patch
with smooth color transitions and prevents noisy images by
constraining the total variation in the patch. They got the
smoother texture patch, but the structure is still messy. Liu et
al. [14] proposed PS-GAN that feeds any type of seed patch to
generate a similar adversarial patch with seed. Tan et al. [26]
proposed the patch rationality, indicated from three aspects:
color features, edge features, and texture features, to encourage
patches to obtain visual rationality. To sum up, these methods
provide improvements to the structure and texture features
of adversarial patches while ensuring the attacking ability. In
TABLE I, we list a comparison of the considered factors of
different methods. Although recent studies have made great
progress on the visual quality of adversarial patches, style as
a vital feature of images, was not taken into account when
generating patches. Our approach fills the gap and generates
the aesthetic adversarial patches that are stylized, customizable
and attacking-robust.

B. Neural Style Transfer

Neural style transfer aims at transferring the style from
one image onto another, which can be framed as image
transformation tasks. Gatys et al. [28] pioneered the parametric
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Fig. 3. Overview of our system pipeline. Given a content target image Icon and a style target image Isty , our method is modeled as an image transformation
network to generate aesthetic adversarial patches (ACAPs). For visual effect, the created patch combines the semantic content of Icon and the style feature
of Isty . For attacking, simulation of the physical environment, non-printability score (NPS) loss Lnps and object loss Lobj together enable the effectiveness
of attack in the physical world.

neural style transfer method employing the power of CNNs
and Gram matrices. They separated the content and style
information of the image from the feature representations. The
style information can then be recombined into the target image
to achieve style transfer. Afterward, the follow-up researches
have been presented to improve their performances on different
aspects [29]–[32]. In this paper, we exploit these techniques
for introducing artistic style to our adversarial patches.

III. METHOD

A. Problem Definition

The goal of our paper is to generate adversarial patches
against the person detection model. Given a DNN-based
detector Fθ and a clean input image I with the ground truth
label y, an aesthetic adversarial patch p can cause the detector
to make incorrect prediction as follows:

Fθ(A(I, p)) ̸= y, (1)

p = TF(Icon, Isty), (2)

where A is a patch apply function that pastes the adver-
sarial patch p to the image I , and TF represents an image
transformation network that transforms input image Icon into
adversarial patch p and captures the style feature from image
Isty . Meanwhile, it ensures that patch p can perform physical
attacks successfully.

B. Overview

As shown in Fig. 3, given a content target image Icon,
our method trains an image transformation network, which
employs the Encoder-Decoder architecture and transforms the
input cartoon image Icon into adversarial patch ACAP. For

visual effect, ACAP combines the semantic content of Icon
and the style feature of Isty; for attack effect, the created
patch is supplied to the external environment simulator that
consists of adding noise, rotation, scaling and printable colors
restriction Lnps. Then, we paste the ACAP onto the person
dataset and input them to the person detector for attacking.
The total objective function Ltotal is defined as

Ltotal = λ1Lobj + λ2Lnps︸ ︷︷ ︸
Physical Attack

+ Lcon + λ3Lsty + Ltv︸ ︷︷ ︸
Aesthetic Patch

,

(3)

where λ1 to λ3 are used to balance the multiple objectives,
object loss Lobj and non-printability score loss Lnps ensure
adversarial attacks apply in the physical world. Content loss
Lcon, style loss Lsty and total variation loss Ltv are minimized
by the optimizer, to control the semantic content, style feature
and smooth texture, respectively. The three loss functions
encourage our transformation network to generate aesthetic
patches.

C. Image-to-Patch Transformation Network

Prior studies [22], [24], [26] optimize an initial patch and
create only one patch in one training. Unlike previous work,
we consider patch generation as an image transformation
problem, where an input image is transformed into an output
image. Fig. 2 shows the difference between the two types of
approaches. Our image-to-patch transformation network is a
deep convolutional neural network parameterized by weights
W1; it transforms input images into output adversarial patches
via a mapping, with the core objectives of i) generating
adversarial patches that perform successful physical attacks,
ii) transferring the targeted artistic style features to created
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patches, and iii) maintaining the semantic content of input
cartoon images. Following the architectural guidelines [28],
[33] for image transformation and perceptual information
capturing, we employ the U-Net architecture in our image-
to-patch transformation network, which allows low-level infor-
mation to shortcut across the network, leading to better results.

Since the direct input to the network is cartoon images,
it contains only content features, making it difficult for the
network to learn other features, e.g., adversarial features that
control the attack effect. To address this shortcoming, we intro-
duce noise features to encourage the transformation network
to be able to express more diverse features. As seen in the top
branch of Fig. 3, the encoder and decoder form a mapping
between cartoon image Icon and latent code. A noise tensor
with spatial dimensions is concatenated with the latent code.
Note that the noise feature tensor is parameterized by weights
W2, which is updated by the optimizer in the training process.
The image transformation network is trained using stochastic
gradient descent to minimize a weighted combination of loss
functions:

W1
∗,W2

∗ =

arg min
W1,W2

EIcon

[∑
i=1

λiLi(D(E(Icon), Noise))

]
.

(4)

D. Introduce Semantic Content and Artistic Style

To tackle the poor appearance of adversarial patches, re-
searchers delve into the total variation of images [34], the
patch rationality [26] and the exploitation of seed patch [14],
[35]. To sum up, they made improvements to the structure
and texture features. Intuitively, generated patches with visual
semantics are more perceptually acceptable to humans than
meaningless distortions. Inspired by this, we introduce content
features to our ACAP from cartoon images by content loss
Lcon. In addition, transforming from a cartoon image to an
adversarial patch requires adding perturbations to the original
image, which will degrade the aesthetics of the image. Our
ACAP introduces style features from artistic images by style
loss Lsty . On the one hand, the introduced style feature
increases the aesthetic elements of patches, and on the other
hand, the artistic style can be used as the camouflage of
adversarial perturbations. Following previous literature [28],
[33], we define the content loss Lcon and the style loss Lsty

as follows:

Lcon(Icon, p) =
1

CcHcWc
∥fc(Icon)− fc(p)∥2, (5)

and

Lsty(Isty, p) =
1

CsHsWs
∥G[fs(Isty)]−G[fs(p)]∥2, (6)

where p is our patch, fc (or fs) is the feature map of shape
Cc×Hc×Wc (or Cs×Hs×Ws) that extracted from the c-th
(or s-th) layer of the pre-trained VGG-16 network [36], and
G indicates the Gram matrix of deep features extracted from
a set of style layers, s ∈ {relu1 2, relu2 2, relu3 3, relu4 3},
and c ∈ {relu3 3}.

Person
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Apply Scale Attack
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…
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Fig. 4. Overview of multi-scale training. The adversarial patch is scaled with
the target image. We randomly choose a scaled size from the interval [320,
608], in increments of 32.

Note that, we observe that our ACAPs generated using
different styles have varying attack capabilities, although their
contents are the same, based on the experimental experience
shown in Sec. IV-B. The style with higher color saturation
and richness has stronger attack capabilities. We can exploit
this pattern to build a style library that collects styles that are
excellent at attacks. And users can use this style library to
generate customized adversarial patches that are superior in
terms of attacks.
Total Variation Loss. To encourage spatial smoothness in the
output patch p and prevent noisy textures, we follow previous
work [34] and use the total variation loss Ltv:

Ltv =
∑
i,j

√
(pi,j − pi+1,j)

2
+ (pi,j − pi,j+1)

2
, (7)

where i and j indicate the index of pixels in our patch p. The
total variation loss makes the style transfer more natural.

E. Attack in the Physical Space

In this paper, we attack YOLOv2 [37], a one-stage strat-
egy object detector, under white-box settings in the physical
space. The detector outputs a bounding box containing the
coordinate position, an object score (how likely it is that
this detection contains an object), a class score (which class
is in the bounding box), and is a joint training method
for detection and classification. In addition, YOLOv2 intro-
duces anchor boxes, and each anchor box contains a vec-
tor [x, y, w, h, pobj , pclass1, pclass2, ...pclassn]. We construct a
triplet [B,Pobj , Pclass] to represent the output of the detector,
where B is the position, Pobj is the probability that this anchor
point contains an object, and Pclass is the class score of the
object. We define the object loss function Lobj to attack the
detector as follows:

Lobj = min
Pobj∈[B,Pobj ,Pclass]

Pobj , s.t. Pclass = 0. (8)

Unlike digital attacks, which only require that models
capture the adversarial perturbations, physical attacks occur
in real-world scenarios and therefore require that sensors, like
cameras, capture the perturbations. Thus, creating adversarial
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Fig. 5. Example results for adversarial patches generated with different styles and contents (bottom) and their attacking effects in the digital space (top and
middle). Clean shows that the detector normally performs when with no patches. Noise and Cartoon show that applying random noise patches or original
cartoon patches cannot attack the detector. Contrastingly, the ACAPs fool the detector to fail to identify persons (Patch).

patches for physical attacks is much more challenging. To keep
the generated adversarial patch more robust in the physical
world, we use the following three strategies.
Multi-Scale Training. To enhance the attack-robustness of
our patches, we employ the multi-scale training strategy. In
previous studies [24], [26], the size of images that are input to
the detector is fixed. However, in physical-world applications,
the object detection model may receive images of different
sizes to detect, and images need to be scaled to the suitable size
that matches the detector. Since the patch is scaled with target
images, it makes the patch less attack effective. Considering
this, we randomly scale images with the patch in every certain
iteration in the training process as shown in Fig. 4. The scale
operation encourages the generated adversarial patch to gain
scale-invariant attack features, which are more conducive to
physical attacks.
NPS Loss. Since the device such as printers and screens can
only reproduce a limited portion of the RGB color space, we
include minimizing the non-printability score (NPS) [34], a
factor that represents how well the colors in our patch can be
represented by a common printer, as part of our optimization.
We construct the loss function Lnps to encourage the generated
patches to be printable.

Lnps =
∑

cpatch∈p

min
cprint∈C

∥cpatch − cprint∥2, (9)

where cpatch is a pixel in our patch p and cprint is a pixel
in the set of printable colors C. The NPS loss Lnps measures
the distance between the designed patch vector and a library
of printable colors acquired from the physical world.
External Environment Simulation. When the adversarial
patch is applied to the physical space, many influencing factors
can impact its appearances, such as rotation, light, and noise.
To take this into account as much as possible, we use a

series of random transformations to simulate the external
environment. When we get created patches from the image
transformation network, we conduct rotating, adding noise,
and scaling up or down to patches before pasting them to
the corresponding location in the person dataset. Note that
all transformation operations are possible to calculate the
backward gradient towards the optimization parameters of the
image transformation network.

IV. EXPERIMENTS

In this section, we evaluate our proposed method in the per-
son detection attack task. Firstly, we outline the experimental
setup. Then, we illustrate the effectiveness of our proposed
attacking method by thorough evaluations in both the digital
and physical space. Furthermore, we analyze our generated
patches via ablation studies.

A. Experimental Setup

Dataset and Model. The INRIAPerson dataset [38] is a set
of images that contain people who are standing or walking.
The dataset has a total of 902 positive sample images, of
which 614 are the training set and 288 are the test set, and
a total of 1826 people are included in these images. Most
of the bodies in the images are in a standing position and
have a height of more than 100 pixels, which are better suited
for attacking the person detection model. The cartoon image
dataset contains 105 images, which we download from the
Internet. We use these images to train and test our proposed
method. We evaluate the performance of our method to attack
YOLOv2 [37] trained on the MS COCO dataset [39], which
includes 80 labeled object classes.
Implementation Details. We conduct all experiments on a
computer with an NVIDIA GeForce RTX 3090 GPU, and
all of our codes are implemented in PyTorch. The network
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Fig. 6. PR-curve of our adversarial patch compared to the random noise
patch, GoogleAP and DPATCH. The average precision (AP) is shown in the
legend. The lower AP, the better the attacking effect.

TABLE II
EVALUATION OF TRANSFERABILITY ON FIVE DETECTOR.

Patch Detector AVG
YOLOv2 YOLOv3-tiny YOLOv3 YOLOv5 Faster RCNN

Noise 94.58 85.83 93.15 93.09 95.87 92.51
Cartoon 89.91 81.41 87.95 87.67 95.06 88.40
ACAP 45.92 42.84 79.75 83.47 88.34 68.07

adopted to extract features of style and content is VGG-16
[36] pre-trained on MSCOCO [39]. The optimizer is Adam,
and the learning rate is initialized as 10−3 decayed by a factor
of 0.1 every 50 epochs. For all experiments, by default, we
set λ1 = 10, λ2 = 10−2, λ3 = 105 in Eq. (3), and each
aesthetic adversarial patch is generated at 103 iterations. In
the training and testing process, we use the initial patch and
the input cartoon image of size 3×256×256. The shape of the
noise feature is 512× 16× 16. Moreover, the attacks mainly
focus on the white-box settings, and the patch is rotated up to
20 degrees each iteration.

B. Digital World Attack

The goal of the digital world attack is to generate adversarial
patches that are applied to images containing persons so that
the detector cannot detect them. We train one image trans-
formation network per style target and demonstrate generated
patches with the performance of their attacks. In Fig. 5,
we show qualitative examples of our ACAPs generated by
a variety of style and content images. In these results, it is
clear that ACAPs are aware of the semantic content and style
features of images. For example, in the bottom of Fig. 5,
the cartoon characters are clearly recognizable in the patches,
and the target style is transferred into corresponding patches.
Meanwhile, our method generates special patterns that can
attack the person detector. As shown in the top and middle
of Fig. 5, we first detect the clean images without any patch
using the YOLOv2 and the detector can recognize the person

TABLE III
COMPARISON RESULTS OF ATTACK ABILITY IN SIX STYLES. WE REPORT

THE AVERAGE PRECISION (AP) FOR THE GENERATED PATCHES WITH FIVE
CONTENT TARGETS AND THE AVG FOR EACH STYLE.

Style Content images AVG
C1 C2 C3 C4 C5

Candy 54.51 56.45 62.71 56.82 57.40 57.59
Composition 49.14 45.20 47.05 44.39 43.94 45.94
Feathers 72.42 75.38 71.76 74.44 61.29 71.06
Mosaic 81.60 79.36 72.64 77.10 78.48 77.84
SNight 60.93 65.54 58.80 57.01 59.08 60.27
Color 48.95 47.94 49.96 48.36 50.16 49.07

Candy Composition Feathers Mosaic SNight Color

and other classes normally (Clean). The results marked Noise
refer to the image with random noise patches. We take original
cartoon images as patches and apply them to target images
(Cartoon), which is compared with the results marked Patch
that attack the detector using our ACAPs. In the first three
cases, YOLOv2 detects normally but fails to detect the person
in the last case. By comparison, we can conclude that our
ACAPs achieve significantly better performance for digital
attacks.
Comparison with SOTA Methods. We compare our ACAPs
with other state-of-the-art adversarial patch generation meth-
ods (containing GoogleAP [22], DPATCH [23], TextureAP
[24] and LAP [26], all of which are shown at the bottom of
TABLE IV). Fig. 6 shows the attack effect of different patches.
Here we select the second patch in Fig. 5 for comparison.
The performance of TextureAP and LAP is not shown in
the PR-curve because we directly use the data from the
relevant literature [24], [26] (25.53%, 43.07% respectively).
The experimental results indicate that GoogleAP and DPATCH
demonstrate poor performance, which only decreases the av-
erage precision (AP) to 83.39% and 94.08%. In contrast, the
ACAP achieves a similar attack ability to LAP, making the
AP decrease to 45.92%. In summary, from the perspective of
attacking ability, our proposed method can generate adversarial
patches that effectively attack the person detection model.
Transferability. Mainstream adversarial attack methods often
tackle the trilemma including: attackability, stealthiness and
transferability. Here, we evaluate the transferability of ACAP.
We take YOLOv2 as our threat model and train to generate
the ACAP (white-box attack). Then the ACAP attacks the
one-stage detectors YOLOv2, YOLOv3-tiny, YOLOv3 [40],
YOLOv5 and two-stage detector Faster RCNN [4] (black-
box attack). The comparison results as shown in TABLE
II, we observe that ACAP remains remarkably attackable on
YOLOv3-tiny with AP dropping to 42.84%, lower than on
YOLOv2. For YOLOv3, YOLOv5 and Faster RCNN, the drop
in AP is not significant, but compared to Noise patch and
Cartoon patch, It is clear that ACAP still has comparable
attacking effect. The transferability of adversarial patches
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TABLE IV
THE SCORE OF IQA, AESTHETICS, NATURALNESS OF DIFFERENT

PATCHES. COLUMN ‘OURS’ IS THE AVERAGE OF OUR FOUR ACAPS.

GoogleAP DPATCH TextureAP LAP Ours

IQA [42] 27.94 43.36 18.26 42.87 46.97
Aesthetics 1.88 2.12 3.42 4.51 6.68
Naturalness 4.62% 5.64% 21.03% 25.13% 43.59%

GoogleAP DPATCH TextureAP LAP Ours

across different detectors is a challenging research issue, which
is the focus of future research in our method.
Analysis of Different Styles. In our experiments, we have
observed an interesting phenomenon: the style has a significant
impact on the attack ability of our generated adversarial
patches. In the following, we conduct a series of experiments
to investigate the relationship between style and attack effec-
tiveness. First, we train six models with six different style
target images [Candy, Composition, Feathers, Mosaic, SNight,
and Color] and generate five patches with each model. The
content target images are C1-C5. Then, these patches are used
to attack the person detector. The comparison results as shown
in TABLE III, we observe that i) the same style of patches,
with little difference in attack ability; ii) the style Composition
makes the average precision (AP) drop to 45.94%, which
has the strongest attack ability compared to others; iii) the
style Feathers and Mosaic are obviously weaker than the other
contrasting styles in terms of attack ability.

We further calculate the tuple(Saturation, Colorfulness) of
each style image and analyze the underlying reason for these
observations. Colorfulness is a metric [41] to measure the
overall color richness of a picture from 0 to 100. In addition,
we conduct a principal component analysis on the colors of
the style images using the K-means clustering algorithm and
display the top-10 principal colors with their percentages in the
palette below TABLE III. The comparison results indicate that
styles with high color saturation and richness have stronger
attack abilities, e.g., Composition (97, 68) and Color (110,
62). Contrarily, single color and less saturated styles generate
patches with fewer attack abilities, e.g., Feathers (64, 54),
Mosaic (66, 47) and SNight (121, 58). This finding provides
a clue to explore the attack mechanism of adversarial patches.
For example, the color of the patches may be more critical
than the structure in the attack task.

C. Patch Quality Assessment

In this part, we conduct patches quality assessments in
aesthetics and naturalness. Related work [22]–[24], [26] (as
shown at the bottom of TABLE IV) is compared with our
ACAPs. We use three evaluation metrics: IQA, Aesthetics, and
Naturalness. IQA is the metric of an image quality assessment
model [42] based on a hyper network, which outputs a score
between 0 and 100 to measure the visual quality of an image.
Furthermore, considering that the aesthetic quality of an image
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Fig. 7. Influences of the multi-scale training for different patches. Comparison
results indicate that our patch maintains a stable attack capability with scaling.

is highly related to the human senses, we conduct a human
perception study on patches as follows: (1) Aesthetics: Partici-
pants are asked to score each of the patches for aesthetics from
0 to 10; (2) Naturalness: Assuming one patch as the design
on your T-shirt, participants are asked which patch you prefer.
In particular, we collect all responses from 52 participants.

As shown in TABLE IV, the IQA of our ACAP is signif-
icantly higher than GoogleAP and TextureAP and similar to
DPATCH and LAP. As for the aesthetics, the ACAP achieve
a score of 6.68, higher than all other patches. Moreover, up to
43.59% of the participants believe that our adversarial patch is
a more appropriate choice for wearing a T-shirt with the patch,
which outperforms others by large margins (18%+). Therefore,
the experimental results demonstrate that our proposed method
can generate aesthetic adversarial patches that are perceptually
consistent with human perception.
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Fig. 8. Comparison results for visual quality and attack capability under
varying degrees of weight λ1 ∈ {0, 5, 10, 15, 20}. We report SSIM, PSNP,
and AP (average precision) for each adversarial patch.
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Scene1 Scene2 Scene3

Fig. 9. The attacking performance in the physical world using three ACAPs printed on white T-shirts. Two participants appear together in the detection
camera wearing T-shirts with the ACAP and corresponding original cartoon image, respectively. We test the effectiveness from three scenes, including indoor,
outdoor, and different backgrounds.

Fig. 10. Display of the wearing visual performance and human parsing results
for our ACAP.

D. Ablation Study

Influence of Multi-Scale Training. To evaluate the influence
of multi-scale training, we conduct a comparative experiment
during the testing phase. First, with a fixed size for images
that are input to the detector, we test the attack performance of
related work (including GoogleAP, DPATCH, TextureAP and
LAP, shown at the bottom of TABLE IV), and our patch (the
second patch in Fig. 5). Second, in each iteration, we randomly
scale the size of the image, as we discussed in Sec. III-E, and
test the attack ability once again. The comparison results are
provided in Fig. 7, we observe that the attack performance
of all patches decreases after random scaling. TextureAP and
LAP decrease the most with 41.49% and 40.25, respectively.
For GoogleAP and DPATCH, since their attack abilities are not
strong in the first place, the drop is not much. For our patch,
we can observe that the AP dropped from 46.57% to 50.75%,
which performs best (lowest Average Precision (AP)) with
the addition of scaling. This means that with the multi-scale
training, our generated patches gain scale-invariant features
and attacking-robustness.

Influence of Attack Weight λ1. For the total objective
function eq.3, the weight of Lobj controls the attack ability
of generated patches. In this experiment, we fix λ2 = 10−2,
λ3 = 105, and modify the λ1 ∈ {0, 5, 10, 15, 20}. We
report AP, PSNR, and SSIM [43], computing to evaluate attack
ability (the stronger with lower AP) and visual quality (the
better with higher SSIM and PSNR). The comparison results
are presented in Fig. 8, we observe a trade-off between smaller
λ1 that are beneficial to optimize visual quality, and larger λ1

that provide better attacking effect. Moreover, different style
targets require appropriate weight λ1 to generate adversarial
patches, e.g. style Candy achieves respectable attacking effect
at λ1 = 10, while style Feathers requires a larger value.

E. Physical World Attack
As for the physical world attack, we conduct several exper-

iments to validate the practical effectiveness of our ACAPs. A
Dell Inspiron 7400 laptop is used to record videos for testing.
As shown in Fig. 9, we print our three ACAPs on white T-
shirts and one participant wears them in turn. As contrast,
another participant wears T-shirts with corresponding original
cartoon images. We display our physical-world attack results
in three different scenarios for comprehensive comparisons.
We can observe that in all frames with different lighting
and background, the detector can recognize the cartoon-patch
person, implying the good detection effectiveness of YOLOv2.
On the contrary, the person with our adversarial patches
cannot be recognized by the detector. The experimental results
demonstrate the robust attacking ability of our adversarial
patches in the physical world.

To further evaluate the wearing performance of our ACAP
from human perception, we apply the texture of our created
patch (the first patch in Fig. 5) to the garment surface using a
virtual simulated environment. Then, we analyze the attack
effect using a human parsing model [44]. The evaluation
results can be witnessed in Fig. 10. For visual quality, our
ACAP demonstrates certain wearability. Meanwhile, ACAP
can perturb the human parsing model, causing it to fail to
consistently identify the various parts of the human body.
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V. DISCUSSION AND CONCLUSION

The appearance of current adversarial patches is abrupt and
spotted easily by human observers. In this paper, we propose
Aesthetic yet Customizable Adversarial Patches (ACAPs) that
are stylized, diversified, and attacking-robust, to attack the
person detection model. To address the challenge of improving
the visual quality of adversarial patches, we consider patch
generation as an image transformation problem and introduce
semantic contents and style features. Using our trained model,
any image can be transformed into an adversarial patch end-
to-end. Extensive experimental results show that our ACAPs
have high quality in both visual effect and attack ability, and
are capable of performing practical attack tasks in the physical
world.

The proposed method is the first end-to-end method to-
wards generating aesthetic patches while endowing them with
adversarial attack abilities. We further find that styles with
high color saturation and richness have stronger attack effects,
which inspires us to explore which feature is critical to
the attack. This meaningful problem needs to be addressed
urgently but is still unclear. Now the successful application of
our method in the physical space exposes the potential security
risks of deep learning models when applied in the real world.
In the future, we are interested in investigating the mechanism
of adversarial attacks and defending against them.
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